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Abstract

While federated learning (FL) allows efficient model training with local data at
edge devices, among major issues still to be resolved are: slow devices known
as stragglers and malicious attacks launched by adversaries. While the presence
of both of these issues raises serious concerns in practical FL systems, no known
schemes or combinations of schemes effectively address them at the same time.
We propose Sageflow, staleness-aware grouping with entropy-based filtering and
loss-weighted averaging, to handle both stragglers and adversaries simultaneously.
Model grouping and weighting according to staleness (arrival delay) provides
robustness against stragglers, while entropy-based filtering and loss-weighted
averaging, working in a highly complementary fashion at each grouping stage,
counter a wide range of adversary attacks. A theoretical bound is established
to provide key insights into the convergence behavior of Sageflow. Extensive
experimental results show that Sageflow outperforms various existing methods
aiming to handle stragglers/adversaries.

1 Introduction

Large volumes of data collected at various edge devices (i.e., smart phones) are valuable resources in
training a model with a good performance. Federated learning [18, 12, 7] is a promising direction for
large-scale learning, which enables training of a global model with less privacy concerns. However,
among major issues that need to be addressed in current federated learning (FL) systems are the
devices called stragglers that are considerably slower than the average and the adversaries that enforce
a various form of attacks.
Regarding the first issue, simply waiting for all the stragglers at each global round can significantly
slow down the overall training process. To handle stragglers, asynchronous FL schemes [15, 22,
25, 21, 14] update the global model every time the server receives a local model from each device;
especially in FedAsync [25], the global model is updated asynchronously according to the device’s
staleness t− τ , the time difference between the current round t and the past round τ when the device
first received the global model. While the asynchronous schemes are highly effective in handling
stragglers, the one-by-one update nature does not lend itself well for integration with established
aggregation methods to combat the second issue, the adversaries.
There are different forms of adversarial attacks that significantly degrade current FL systems. In
untargeted attacks, an attacker can poison the updated model at the devices before it is sent to the
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server (model poisoning) [3, 9] or can poison the datasets of each device (data poisoning) [2, 16]. In
targeted attacks (or backdoor attacks) [4, 1, 20], the adversaries cause the model to misclassify the
targeted subtasks only, while not degrading the overall test accuracy that much. Robust federated
averaging (RFA) of [19], a well-known method proposed to handle adversaries in FL, employs
geometric-median-based aggregation to provide a fair level of protection. Other various aggregation
schemes (e.g., Multi-Krum) also successfully handle adversaries in distributed learning [3, 28, 5].
Unfortunately, however, the performance of these methods are substantially degraded when the
portion of adversaries is large. The presence of stragglers can drive the attack ratio higher (e.g., by
ignoring stragglers), significantly degrading the performance of current aggregation schemes.
While the presence of both stragglers and adversaries raises significant concerns in practical FL, to
our knowledge, there are currently no existing methods or known combinations of ideas that can
effectively handle these two issues simultaneously.
Main contributions. We propose Sageflow, staleness-aware grouping with entropy-based filtering
and loss-weighted averaging, a robust FL strategy which can handle both stragglers and adversaries
at the same time. Targeting the straggler issue, our strategy is to perform periodic global aggregation
while allowing the results sent from stragglers to be aggregated in later rounds. In each global round,
we take advantage of the results sent from stragglers by first grouping the models that come from the
same initial models (i.e., same staleness), to obtain a group representative model. Then, we aggregate
the representative models of all groups based on their staleness, to obtain the global model. Our
periodic aggregation strategy is not only effective in neutralizing stragglers but also provides a great
platform for countering adversaries, as discussed below.
Targeting each grouping stage of our straggler-mitigating idea, we propose an intra-group defense
strategy which is based on our entropy-based filtering and loss-weighted averaging. The entropy
filtering first filters out the models with high entropies, i.e., outliers, and the loss-weighted averaging
of the survived models enables model aggregation according to the measured qualities of the received
local models. These two methods work in a highly complementary fashion to effectively counter a
wide range of adversarial attacks in each grouping stage. Here, in computing the entropy and loss
of each received model, we utilize public data that we assume to be available at the server. In fact,
the utilization of public data is not a new idea, as seen in recent FL setups of [30, 27, 11]. This is
generally a reasonable setup since data centers typically have some collected data that can be accessed
by public. For example, different types of anonymous medical data are often available for public
research in various countries. We show later via experiments that only a very small amount of public
data is necessary at the server (1-2% of the entire dataset, which is comparable to the amount of local
data at a single device) to successfully combat adversaries. Our main contributions are as follows:

• We propose Sageflow, handling both stragglers/adversaries simultaneously in FL, via a novel
staleness-aware grouping combined with entropy filtering and loss-weighted averaging.

• We derive the theoretical bound for Sageflow based on key parameters and provide insights
into the convergence behavior.

• Experimental results on different datasets show that Sageflow outperforms various combina-
tions of straggler/adversary defense methods using only a small portion of public data.

Related works. The authors of [15, 22, 25, 17, 21] have recently tackled the straggler issue in FL.
The basic idea is to allow the devices and the server to update the models asynchronously; the global
model is updated every time the server receives a model from a device. However, a critical issue is
that grouping-based (or aggregation-based) methods designed to handle adversaries, such as RFA
[19], Multi-Krum [3] or the presently proposed entropy/loss based idea, are hard to be implemented
in conjunction with these schemes since the model update is performed one-by-one asynchronously.
Compared to the asynchronous schemes, our staleness-aware grouping can be combined smoothly
with various aggregation rules against adversaries; we can apply RFA, Multi-Krum or our entropy/loss
based idea in each grouping stage to obtain the group representative model.
To combat adversaries, various aggregation methods have been proposed in a distributed learning
setup with IID (independent, identically distributed) data across nodes [28, 29, 5, 3, 24]. The authors
of [5] suggests a geometric-median-based aggregation rule of models or gradients. In [28], a trimmed
mean approach is proposed which removes a fraction of largest and smallest values of each element
among the received results. In Multi-Krum [3], among N workers in the system, the server tolerates
f Byzantine workers, where 2f + 2 < N . Targeting FL with non-IID data distribution, RFA
of [19] utilizes the geometric median of models sent from devices, similar to [5]. However, as
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already implied, these methods are ineffective when combined with a straggler-mitigation scheme
(e.g., ignoring stragglers), potentially degrading the performance of learning. Compared to Multi-
Krum and RFA, our entropy/loss based scheme can tolerate adversaries even with a high attack
ratio, showing remarkable advantages, especially when combined with straggler-mitigation schemes.
Moreover, our approach enables defense against a wider variety of attacks by considering both entropy
and loss, which are shown to play highly complementary roles.

Finally, we note that the authors of [26], [27] proposed Zeno and Zeno+ that also utilize public data
at the server to handle adversaries, but in a distributed learning setup with IID data across the nodes.
Compared to Zeno+, our Sageflow targets non-IID data distribution in a FL setup. While Zeno+
adopts a fully asynchronous update rule (without considering the staleness) with the loss-based score
function, our Sageflow integrates staleness-aware grouping, a semi-synchronous straggler-handling
method, with entropy filtering and loss-weighted averaging, a harmonized means to provide protection
against a wider variety of attacks. We show later via experiments that our Sageflow outperforms
Zeno+ in practical FL setups having stragglers and various types of adversaries.

2 Proposed Sageflow for Federated Learning

We consider the following federated optimization problem:

w∗ = argmin
w

F (w) = argmin
w

N∑
k=1

mk

m
Fk(w), (1)

whereN is the number of devices, mk is the number of data samples in device k, andm =
∑N
k=1mk

is the total number of data samples of all N devices in the system. By letting xk,j be the j-
th data sample in device k, the local loss function of device k, Fk(w), is written as Fk(w) =
1
mk

∑mk
j=1 `(w;xk,j).

2.1 Staleness-Aware Grouping against Stragglers

In the t-th global round of a practical FL setting, the server sends the current model wt to K devices
in St, a randomly selected subset of N devices. We let C = K/N be the ratio of devices that
participate in each global round. Each device in St performs E local updates with its own data and
sends the updated model back to the server.

In handling slow devices, our idea assumes periodic global aggregation at the server. At each global
round t, the server transmits the current model and time stamp, (wt, t), to the devices in St. Instead of
waiting for all devices in St, the server aggregates the models that arrive by a fixed time deadline Td
to obtain wt+1, and moves on to the next global round t+ 1. Hence, model aggregation is performed
periodically with every Td. A key feature here is that we do not ignore the results sent from stragglers
not arriving by the deadline Td. These results are utilized at the next global aggregation step, or even
later, depending on the delay or staleness. Let U (t)

i be the group of devices selected from the server
at global round t that successfully sent their results to the server at global round i for i ≥ t. Then, we
can write St = ∪∞i=tU

(t)
i , where U (t)

i ∩ U
(t)
j = ∅ for i 6= j. Here, U (t)

∞ can be viewed as the devices
that are selected at round t but failed to successfully send their results back to the server. According
to these notations, the devices whose training results arrive at the server during global round t belong
to one of the t+ 1 groups: U (0)

t , U (1)
t , ..., U

(t)
t . Note that the result sent from device k ∈ U (i)

t is the
model after E local updates starting from wi, and we denote this model by wi(k). At each round t,
we first perform FedAvg as

v
(i)
t+1 =

∑
k∈U(i)

t

mk∑
k∈U(i)

t
mk

wi(k) (2)

for all i = 0, 1, ..., t. Here, v(i)
t+1 can be viewed as a group representative model, which is the

aggregated result of locally updated models (starting from wi) received at round t with staleness
t−i+1. Then from the representative models of all t groups, v(0)

t+1, v(1)
t+1,..., v(t)

t+1, we take a weighted

averaging according to different staleness:
∑t
i=0 α

(i)
t (λ)v

(i)
t+1. Here, α(i)

t (λ) ∝
∑
k∈U(i)

t

mk

(t−i+1)λ
is a

normalized coefficient that is proportional to the number of data samples in U (i)
t and inversely

proportional to (t− i+ 1)λ, for a given staleness exponent λ ≥ 0. Hence, we have a larger weight
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Figure 1: Overall procedure of Sageflow. At global round t, each received model belongs to one of the t+ 1

sets: U (0)
t , U (1)

t , ..., U
(t)
t . After entropy-based filtering, the server performs loss-weighted averaging for the

results that belong to U (i)
t (Eth) to obtain v

(i)
t+1. Then we aggregate {v(i)

t+1}ti=0 with wt to obtain wt+1, and
move on to the next round t+ 1.

for v(i)
t+1 with a smaller t − i + 1 (staleness). This is to give more weights to more recent results

having smaller staleness. Based on the weighted sum
∑t
i=0 α

(i)
t (λ)v

(i)
t+1, we finally obtain wt+1 as

wt+1 = (1− γ)wt + γ

t∑
i=0

α
(i)
t (λ)v

(i)
t+1, (3)

where γ is the time-average coefficient. Now we move on to the next round t+ 1, where the server
selects St+1 and sends (wt+1, t + 1) to these devices. Here, if the server knows the set of active
devices (which are still performing computation), St+1 can be constructed to be disjoint with the
active devices. If not, the server randomly chooses St+1 among all devices in the system and the
selected active devices can ignore the current request of the server. The left-hand side of Fig. 1
describes our staleness-aware grouping method.

The key characteristics of our approach against stragglers can be summarized as follows. First,
by periodic global aggregation at the server, our scheme is not delayed by the effect of stragglers.
Secondly, our scheme fully utilizes the results sent from stragglers in the future global rounds.

2.2 Entropy-based Filtering and Loss-Weighted Averaging against Adversaries

In this subsection, we propose a two-stage solution against adversaries which not only shows
better performance with attacks but also combines well with our staleness-aware grouping scheme
compared to existing aggregation methods to handle adversaries. Our idea is to utilize a small amount
of public data collected at the server. Data centers typically have their own public data samples as
utilized in recent FL setups of [30, 27, 11], e.g., various anonymous medical data that are open for
public research. We provide the following two solutions which can protect the system in a highly
complementary fashion against various attacks including model poisoning, data poisoning and scaled
backdoor attacks using only a very small amount of public data. It is shown later in Section G of
Supplementary Material that our idea works well even with a class-imbalanced public data.

1) Entropy-based filtering. Let npub be the number of public data samples in the server. We also let
xpub,j be the j-th sample in the server. When the server receives the locally updated models from the
devices, it measures the entropy of each device k by utilizing the public data as

E(k) =
1

npub

npub∑
j=1

Expub,j (k), (4)

where Expub,j(k) is the shannon entropy of the model of the k-th device on the sample xpub,j written
as Expub,j (k) = −

∑Q
q=1 P

(q)
xpub,j (k) log P

(q)
xpub,j (k). Here, Q is the number of classes of the dataset

and P (q)
xpub,j (k) is the probability of prediction for the q-th class on a sample xpub,j , using the model

of the k-th device. In supervised learning, the model produces a high-confident prediction for the
ground truth labels of the trained samples and thus has a low entropy for the prediction. However, as
can be seen from Fig. 2(a) with the FMNIST dataset [23], under specific model poisoning attacks
(reverse sign attack with scale 0.1 in this case), the models compromised by adversaries tend to
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Figure 2: Model poisoning ((a), (b)): We can filter out the models of adversaries via entropy, but not via loss.
Data poisoning ((c), (d)): We can reduce the impact of adversaries via loss, but not via entropy.

predict randomly for all classes and thus have high entropies compared to the models of benign
devices. Even when the local dataset of the benign device is biased, it has a high-confident prediction
(i.e., low entropy) on the classes that are in their local dataset, making the entropy lower compared to
the model of the adversaries (as seen in Fig. 2(a)). Based on this observation, we let the server to filter
out the models that have entropies greater than some threshold value Eth. We note that the inflicted
models cannot be filtered out based on the loss values in the setting of model poisoning in Fig. 2 (see
Fig. 2(b)), which confirms the importance of the role of entropy. It is shown later in Section 4 that
Eth is a hyperparameter that can be easily tuned since there is a huge gap between the entropy values
of benign versus adversarial devices. We also note that our entropy-based filtering is robust against
attacks even with a large portion of adversaries, since it just filters out the results whose entropies are
greater than Eth. This is a significant advantage compared to current aggregation methods against
adversaries, whose performances are substantially degraded when the attack ratio is high.

We note that there are some cases where entropy cannot play a role, e.g., when the attacker forces
the model to be biased toward specific classes. Data poisoning is one example of such attack. In
such cases, the models of the adversaries generally produce high loss values and thus loss-weighted
averaging (which will be described shortly) can play a key role.

2) Loss-weighted averaging. The server also measures the loss of each model using the public data.
Based on the loss values, the server aggregates the models as follows:

wt+1 =
∑
k∈St

β
(k)
t (δ)wt(k), where (5)

β
(k)
t (δ) ∝ mk

{Fpub(wt(k))}δ
and

∑
k∈St

β
(k)
t (δ) = 1. (6)

Here, wt(k) is the locally updated model of the k-th device at global round t. Fpub(wt(k)) is
defined as the averaged loss of wt(k) computed on public data at the server, i.e., Fpub(wt(k)) =

1
npub

∑npub
j=1 `(wt(k);xpub,j). Finally, δ(≥ 0) in {Fpub(·)}δ is a loss exponent related to the impact

of the loss measured with public data. We note that a setting δ = 0 in (5) reduces our loss-weighted
averaging method to FedAvg of (1). Under the data poisoning attack or model replacement backdoor
attack (or scaled backdoor attack) in [1], the models of adversaries have relatively larger losses
compared to others. Fig. 2(d) shows an example with FMNIST dataset under data poisoning attack.
By the definition of β(k)

t (δ), the data-poisoned model would be given a small weight and has a less
impact on the next global update. By replacing FedAvg with the above loss-weighted averaging, we
are able to build a system that is highly robust against data poisoning and scaled backdoor attacks. As
can be seen from Fig. 2(c), the impact of data poisoning cannot be filtered out via entropy measures,
since the benign and inflicted models have similar entropy values. This indicates that the loss measure
has its own unique role, along with the entropy measure.
Entropy-based filtering and loss-weighted averaging can be easily combined, and work complemen-
tarily to tackle model poisoning, data poisoning and scaled backdoor attacks. Utilizing only one of
these methods significantly degrade the performance, as shown later in Section F of Supplementary
Material.
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2.3 Sageflow

Finally we put together Sageflow, which can handle both stragglers and adversaries at the same
time by applying entropy-based filtering and loss-weighted averaging in each grouping stage of
our straggler-mitigating staleness-aware aggregation. The details of overall Sageflow operation are
described in Algorithm 1 and Fig. 1.

We stress that Sageflow performs well with only a very small amount of public data at the server, 1%
of the entire dataset, which is comparable to the amount of local data at a single device. This would
not cause large delay as the server generally has a large computing resources compared to that of
devices. The computational complexity of Sageflow depends on the number of received models at
each global round, and the running time for computing the entropy/loss of each model. Assuming
that the complexity of computing entropy or loss is linear to the number of model parameters as in
[26], the time complexity of our scheme can be written as O(npub|w|K) (where |w| is the number of
model parameters), which scales linearly with K, the number of devices. The time complexity of
Zeno is the same as ours, but suffers from performance degradation as can be seen in the experimental
results in Section 4. Compared to RFA, Sageflow requires higher complexity by the factor npub. This
additional computation of Sageflow compared to RFA is the cost for considerably better robustness
against adversaries.

Algorithm 1 Proposed Sageflow Algorithm
Input: Initialized model w0, Output: Final global model wT

Process at the Server
1: for each global round t = 0, 1, ..., T − 1 do
2: Choose St and send the current model and the global round (wt, t) to the devices
3: Wait for Td and then:
4: for i = 0, 1, ..., t do
5: U

(i)
t (Eth) = {k ∈ U (i)

t |E(k) < Eth} // Entropy-based filtering in each group
6: v

(i)
t+1 =

∑
k∈U(i)

t (Eth)
β
(k)
t (δ)wi(k) // Loss-weighted averaging in each group (with same staleness)

7: end for
8: wt+1 = (1 − γ)wt + γ

∑t
i=0 α

(i)
t (λ)v

(i)
t+1 // Averaging of representative models (with different

staleness)
9: end for

Process at the Device: Device k receives (wt, t) from the server and performs local updates to obtain wt(k).
Then each benign device k sends (wt(k), t) to the server, while a malicious adversary sends a poisoned model
depending on the type of attack.

3 Convergence Analysis

In this section, we provide insights into the convergence of Sageflow with the following standard
assumptions in FL [13, 25].

Assumption 1 The global loss fuction F defined in (1) is µ-strongly convex, i.e., F (x) ≤ F (y) +
∇F (x)T (x−y)− µ

2 ‖x−y‖
2 for all x, y. Moreover, F isL-smooth, i.e., F (x) ≥ F (y)+∇F (x)T (x−

y)− L
2 ‖x− y‖

2 for all x, y.

Assumption 2 Let wi
t(k) be the model of the k-th benign device after i local updates starting from

global round t. Let ξit(k) be a set of data samples that are randomly selected from the device k for
(i+1)-th local update. Then, E‖∇Fk(wi

t(k), ξit(k))−∇F (wi
t(k))‖2 ≤ ρ1 holds for all t and k =

1, . . . , N and i = 1, . . . , E.

Let B(i)
t and M (i)

t be the set for benign and adversarial devices of U (i)
t respectively, satisfying

U
(i)
t = B

(i)
t ∪M

(i)
t and B(i)

t ∩M
(i)
t = ∅. Similarly, define B(i)

t (Eth) and M (i)
t (Eth) as the sets

obtained after entropy-based filtering is applied to B(i)
t and M (i)

t . Now we have the following
definition which describes the effect of the adversaries.

Definition 1 Let Ω
(i)
t (Eth, δ) be the weighted sum of loss weights for the adversaries k ∈M (i)

t (Eth)
and their loss differences from F (w∗) :

Ω
(i)
t (Eth, δ) =

∑
k∈M(i)

t (Eth)

β
(k)
i (δ)[F (wt(k))− F (w∗)]. (7)
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Figure 3: Performance with only stragglers: The performance of Sageflow is comparable to FedAsync while
outperforming other schemes. However, as to be shown in Fig. 5, FedAsync performs well with only stragglers;
it does not integrate naturally with methods that can counter adversaries.

Based on the above assumptions and definition, we state the following theorem which provides the
convergence bound of Sageflow in terms of staleness exponent λ, entropy threshold Eth and loss
exponent δ. The proof is in Section L of Supplementary Material.

Theorem 1 Suppose Assumptions 1, 2 hold and the learning rate η is set to be less than 1
L . Then

Sageflow satisfies

E[F (wT )− F (w∗)] ≤ νT [F (w0)− F (w∗)] + (1− νT )Z(λ,Eth, δ) (8)

where ν = 1− γ + γ(1− ηµ)E ,

Z(λ,Eth, δ) =
ρ1 + 2µGmax(λ) + 2µΩmax(Eth, δ)

2ηµ2
, (9)

Gmax(λ) = max
1≤t≤T

∑t−1
i=0 α

(i)
t (λ)e

(i)
t , Ωmax(Eth, δ) = max

t,i≤t
Ω

(i)
t (Eth, δ), e(i)t = F (wi)− F (wt).

In (8) above, we see a trade-off between νT , which determines the convergence speed, and (1−νT )Z,
which represents an error. Note that ν is a function of both γ, which is the weight on the new model
during time-averaging of models in (3), and E, which is the number of local updates. If we increase
γ, we have a higher convergence speed (i.e., a small νT ) but a larger error term, which is the same
tradeoff observed in [25] when there are only stragglers. With adversaries also considered, however,
our scheme allows a separate control on the error term Z(λ,Eth, δ) through staleness exponent
λ, entropy-filtering threshold Eth and the loss-weighted exponent δ. Here, in Z(λ,Eth, δ) of (9),
Gmax(λ) is the error term caused by stragglers controlled by λ, and Ωmax(Eth, δ) is the error caused
by adversaries controlled by Eth and δ. First, to gain insights on Gmax(λ), assume that the loss of
the global model decreases as global round increases, i.e., F (wi) < F (wj) for i > j. Then, we
have e(0)t > e

(1)
t > ..., > e

(t−1)
t > 0. In order to reduce

∑t−1
i=0 α

(i)
t (λ)e

(i)
t , we have to increase the

staleness exponent λ to increase α(i)
t (λ) for a large i (weight for the group with small staleness)

while reducing α(i)
t (λ) for a small i (weight for the group with large staleness). By choosing an

appropriate λ, we can control the error term Gmax while taking advantage of the results sent from
stragglers. As for the adversary-induced error Ωmax(Eth, δ), by imposing a threshold Eth, we can
reduce the portion of adversaries (with high entropies) in each group U (i)

t (Eth), which in turn reduces
Ωit according to (7). Likewise, by introducing δ, we can reduce the loss-weights β(k)

i (δ) (defined in
(6)) of the adversaries with large losses, which again reduces Ω

(i)
t according to (7). These effects

can significantly reduce Ωmax of (9) compared to the scheme that does not utilize the entropy/loss
based idea (Eth = ∞, δ = 0). A more detailed discussion on the effects of λ, Eth, δ on Gmax(λ)
and Ωmax(Eth, δ) is described in Sections M and N of Supplementary Material. In the next section,
we show via experiments that Sageflow in fact successfully combats both stragglers and adversaries
simultaneously and achieves fast convergence with a small error term.

4 Experiments

In this section, we validate Sageflow on MNIST [10], FMNIST [23] and CIFAR10 [8]. The dataset is
split into 60,000 train and 10,000 test samples for MNIST and FMNIST, and split into 50,000 train and
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Figure 4: Performance with only adversaries (model poisoning): Sageflow shows better over performance
than other schemes.

Table 1: Performance with only adversaries
Model poisoning Data poisoning Scaled backdoor attack
(Test accuracy) (Test accuracy) (Attack success rate)

Methods\Datasets MNIST FMNIST CIFAR10 MNIST FMNIST CIFAR10 MNIST FMNIST CIFAR10

FedAvg 22.16% 33.70% 10.00% 93.58% 81.54% 58.02% 99.99% 99.88% 98.07%
Zeno+ 24.09% 31.08% 10.00% 94.11% 84.03% 57.88% 0.45% 2.94% 3.07%
RFA 95.9% 68.01% 16.43% 96.73% 83.07% 65.02% 67.25% 66.6% 86.86%
Sageflow (Ours) 97.55% 86.65% 65.47% 97.60% 85.14% 64.46% 0.39% 1.71% 2.14%

10,000 test samples for CIFAR10. A simple convolutional neural network (CNN) with 2 convolutional
layers and 2 fully connected layers is utilized for MNIST, while CNN with 2 convolutional layers
and 1 fully connected layer is used for FMNIST. When training with CIFAR10, we utilized VGG-11.
We consider N = 100 devices each having the same number of data samples. We randomly assigned
two classes to each device as in [18] to create non-IID situations. We ignored the batch normalization
layers when training VGG-11 with CIFAR10. At each global round, we randomly selected a fraction
C of devices in the system to participate. For the proposed Sageflow method, we sample 2% of the
entire training data uniformly at random to be the public data and performed FL with the remaining
98% of the train set. We note that Sageflow performs well even with a smaller amount of public
data (less than 2%) and even with a class-imbalanced public data, as described in Supplementary
Material. The number of local epochs at each device is set to 5. The local batch size is set to 10
for all experiments except for the backdoor attack. In addition, we used tuned hyperparameters for
Sageflow and other comparison schemes; the details are described in Supplementary Material. Here,
we emphasize that the performance of Sageflow is not highly sensitive to the hyperparameters such as
loss exponent δ and entropy threshold Eth, as long as they are chosen in a reasonable range. These
results are also shown in Section D of Supplementary Material.
Experiments with stragglers. To confirm the advantage of Sageflow, we first consider the scenario
with only the stragglers. The adversaries are not considered here. With only stragglers, we compare
Sageflow with the following methods. First is the wait for stragglers approach where FedAvg is
applied after waiting for all the devices at each global round. The second scheme is the ignore
stragglers approach where FedAvg is applied after waiting for a certain timeout threshold and ignore
the results sent from slow devices. The third scheme is the wait for a percentage of stragglers where
FedAvg is applied after waiting for a specific portion of the selected devices in each global round. In
the main manuscript, we consider a scheme that waits for 50% of selected devices, while the results
with other portions are shown in Section K of Supplementary Material. Finally, we consider the
asynchronous scheme (FedAsync) [25] where the global model is updated every time the result of
each device arrives. For Sageflow and FedAsync, γ is decayed while the learning rate is decayed in
other schemes.

In Fig. 3, we plot the test accuracy versus running time on different datasets with C = 0.1. For a
fair comparison, the global aggregation at the server is performed with every Td = 1 periodically for
Sageflow and other comparison schemes (ignore stragglers, FedAsync). To model stragglers, each
device can have delay of 0, 1, 2 global rounds which is determined independently and uniformly
random. In other words, at each global round t, we have St = U

(t)
t ∪ U

(t)
t+1 ∪ U

(t)
t+2. Experimental

results in a more severe straggler scenario (delay of 0 to 8 global rounds) is shown in Section I of
Supplementary Material. Our first observation from Fig. 3 is that the ignore stragglers scheme can
lose significant data at each round and often converges to a suboptimal point with less accuracy. The
wait for stragglers scheme requires the largest running time until convergence due to the delays caused

8



0 50 100 150

Running time

20

40

60

80

100

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

Wait for partial stragglers + RFA

Zeno+

(a) MNIST

0 50 100 150

Running time

20

40

60

80

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

Wait for partial stragglers + RFA

Zeno+

(b) FMNIST

0 200 400 600 800 1000 1200

Running time

10

20

30

40

50

60

70

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

Wait for partial stragglers + RFA

Zeno+

(c) CIFAR10

Figure 5: Performance with both stragglers and adversaries (model poisoning): Sageflow outperforms
various combinations aiming to handle stragglers/adversaries.

Table 2: Performance with both stragglers and adversaries
Model poisoning Data poisoning Scaled backdoor attack
(Test accuracy) (Test accuracy) (Attack success rate)

Methods\Datasets MNIST FMNIST CIFAR10 MNIST FMNIST CIFAR10 MNIST FMNIST CIFAR10

Zeno+ 9.96% 9.95% 9.21% 12.27% 10.00% 10.00% - - -
Ignore stragglers + RFA 10.04% 10.00% 10.00% 97.38% 80.78% 64.51% - - -
Wait for partial stragglers + RFA 78.29% 35.29% 10.00% 97.59% 70.15% 62.13% 32.16% 98.49% 82.26%
Wait for stragglers + RFA 96.20% 70.01% 17.17% 96.60% 80.01% 58.51% 3.17% 42.79% 81.74%
Sag + RFA 95.78% 73.64% 10.00% 97.60% 83.55% 64.18% 99.97% 99.97% 90.79%
FedAsync + eflow 84.7% 66.38% 53.03% 83.47% 48.80% 51.28% 99.99% 99.86% 91.34%
Sageflow (Ours) 97.27% 85.23% 63.76% 97.38% 85.01% 64.87% 0.21% 3.79% 5.56%

by slow devices. The wait for a percentage of stragglers scheme achieves a similar performance with
wait for stragglers scheme. Finally, it is observed that the performance of Sageflow is comparable
with FedAsync, the state-of-the-art straggler-mitigating scheme. However, FedAsync is not an ideal
candidate for our target scenario with both stragglers and adversaries, which will be shown in Fig. 5.
Experiments with adversaries. Next, we confirm the performance of Sageflow in Fig. 4 under a
synchronous scenario with only adversaries. We compare our method with geometric-median-based
RFA [19] and FedAvg under the model update/data poisoning and backdoor attacks. We also consider
Zeno+ [27] which utilizes public data at the server: the server first computes the difference between
the loss of the received model and the loss of the previous global model. If this loss difference is
above a certain threshold, the corresponding model is filtered out. Since there are no stragglers in
Fig. 4, we considered a synchronized version of Zeno+ where the models are aggregated via FedAvg
after the filtering process. For a fair comparison, we let 2% of the training data to be the public data
and the remaining 98% to be distributed at the devices, as in our Sageflow. Comparison with other
robust aggregation methods including Multi-Krum is done in Section E of Supplementary Material.
For model poisoning, each adversarial device sends −0.1w to the server, instead of sending the true
model w. For data poisoning attack, we conduct label-flipping [2], where each label i is flipped to
label i+ 1. For both attacks, we set C to 0.2 and the portion of adversarial devices is assumed to be
r = 0.2 at each global round. Additional experimental results with a varying portion of adversaries r
are reported in Section J of Supplementary Material.
For the backdoor, we use the model replacement method (scaled backdoor attack) [1] in which
adversaries transmit the scaled version of the corrupted model to replace the global model with a
bad model. We conduct pixel-pattern backdoor attack [6] in which the specific pixels are embedded
in a fraction of images, where these images are classified as a targeted label. See Section B of
Supplementary Material for the detailed setting. We measure the attack success rate of the backdoor
task by embedding the pixel-pattern into all test samples (except data with label 2) and then comparing
the predicted label with the target label. We applied backdoor attack in every global round after the
10-th round for MNIST and FMNIST, and after the 1000-th round for CIFAR10.
In Fig. 4 and Table 1, we compare performance of different schemes with only adversaries. The
performance of the table is obtained at a specific global round (see Section A of Supplementary
Material for description) by averaging the accuracy over 3 independent trials. FedAvg does not
work well on all datasets, and the performance of RFA gets worse as the dataset/neural network
model become more complex. Although Zeno+ utilizes public data, it does not perform well under
model poisoning attack. This is because the models of adversaries cannot be filtered out based on
losses in the beginning of training (see Fig. 2(b)), making Zeno+ difficult to filter out the poisoned
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models when the scale factor is 0.1. Zeno+ also has lower performance compared to others in data
poisoning, since the loss difference between the global model and the model of adversary is not
significant. However, in scaled backdoor attack, we have a large loss difference for Zeno+. Hence,
Zeno+ performs well under the scaled backdoor attack. Overall, the results confirm the advantage
of Sageflow compared to other methods. The results on no-scaled backdoor attack, where the
corrupted model is transmitted without scaling, are shown in Section B of Supplementary Material:
to summarize the results, Sageflow can slow down the poisoning of the global model.
Experiments with both stragglers and adversaries. Finally in Fig. 5 and Table 2, we consider the
setup with both stragglers and adversaries. We compare Sageflow with various straggler/adversary
defense combinations, including Zeno+. We consider an asynchronous version of Zeno+ as in [27]:
the server first subtracts each survived model (after filtering) from the previous global model to
obtain the model difference. Then, the global model is updated asynchronously based on each
model difference. Comparison with the Multi-Krum is illustrated in Supplementary Material. We
set C = 0.2, r = 0.2 for model/data poisoning and C = 0.1, r = 0.1 for the scaled backdoor attack.
The stragglers and adversaries are modeled as in Fig. 3 and Table 1, respectively. Note that in scaled
backdoor attack, we excluded the results for Zeno+ and RFA combined with ignore stragglers, since
the models are not trained at all. We have the following observations. First, Zeno+ does not perform
well since it does not take both the staleness and entropy into account. It can be also seen that the
wait for stragglers scheme combined with RFA suffers from the straggler issue. Our next observation
is that the RFA combined with ignore stragglers method exhibits poor performance. The reason is
that the attack ratio could often be very high (larger than r) for this deadline-based scheme, which
degrades the performance of RFA. Due to the same issue, RFA combined with our staleness-aware
grouping (Sag) has performance degradation. FedAsync does not perform well when combined with
entropy-based filtering and loss-weighted averaging (eflow), since the model update is conducted
one-by-one in the order of arrivals. Due to the same issue, FedAsync cannot be combined with RFA.
Overall, the proposed Sageflow performs the best, confirming significant advantages of our scheme
under the existence of both stragglers and adversaries.

5 Conclusion

We proposed Sageflow, a robust FL scheme that can handle both stragglers and adversaries at the
same time. The staleness-aware grouping allows the server to effectively utilize the results sent
from stragglers. The grouping-based strategy also integrates naturally with effective defenses against
adversary attack. In each grouping stage of our straggler-mitigating approach, entropy-based filtering
and loss-weighted averaging function in a highly complementary fashion to protect the system against
a wide variety of adversarial attacks. Theoretical convergence analysis provides key insights into
why the suggested methods work well. Extensive experimental results show that Sageflow enables
robust FL in practical scenarios with a large number of slow devices and adversaries.

An interesting future issue is how to combine existing secure aggregation methods with Sageflow.
This presents a challenge as the server should have access to every received individual model to
calculate the entropy and loss values in Sageflow.
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[7] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[9] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In
Concurrency: the Works of Leslie Lamport, pages 203–226. 2019.

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[11] Qinbin Li, Bingsheng He, and Dawn Song. Model-agnostic round-optimal federated learning
via knowledge transfer. arXiv preprint arXiv:2010.01017, 2020.

[12] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. arXiv preprint arXiv:1908.07873, 2019.

[13] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[14] Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Stragglers are not disaster: A hybrid federated
learning algorithm with delayed gradients. arXiv preprint arXiv:2102.06329, 2021.

[15] Yanan Li, Shusen Yang, Xuebin Ren, and Cong Zhao. Asynchronous federated learning with
differential privacy for edge intelligence. arXiv preprint arXiv:1912.07902, 2019.

[16] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
Xiangyu Zhang. Trojaning attack on neural networks. 2017.

[17] Xiaofeng Lu, Yuying Liao, Pietro Lio, and Pan Hui. Privacy-preserving asynchronous federated
learning mechanism for edge network computing. IEEE Access, 8:48970–48981, 2020.

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282, 2017.

[19] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated
learning. arXiv preprint arXiv:1912.13445, 2019.

[20] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

[21] Marten van Dijk, Nhuong V Nguyen, Toan N Nguyen, Lam M Nguyen, Quoc Tran-Dinh, and
Phuong Ha Nguyen. Asynchronous federated learning with reduced number of rounds and
with differential privacy from less aggregated gaussian noise. arXiv preprint arXiv:2007.09208,
2020.

[22] Wentai Wu, Ligang He, Weiwei Lin, Stephen Jarvis, et al. Safa: a semi-asynchronous protocol
for fast federated learning with low overhead. arXiv preprint arXiv:1910.01355, 2019.

[23] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

11



[24] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd.
International Conference on Machine Learning, 2018.

[25] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934, 2019.

[26] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent
with suspicion-based fault-tolerance. In International Conference on Machine Learning, pages
6893–6901. PMLR, 2019.

[27] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully asynchronous sgd. arXiv
preprint arXiv:1903.07020, 2019.

[28] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498, 2018.

[29] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Defending against saddle
point attack in byzantine-robust distributed learning. arXiv preprint arXiv:1806.05358, 2018.

[30] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12


	Introduction
	Proposed Sageflow for Federated Learning
	Staleness-Aware Grouping against Stragglers
	Entropy-based Filtering and Loss-Weighted Averaging against Adversaries
	Sageflow

	Convergence Analysis
	Experiments
	Conclusion

